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ABSTRACT
Hyper-Raman scattering by the zone-centre optical phonons in some alkali halides is investigated. In our calculations we relate
the electrooptic part of the hyper-Raman tensor to the third-order optical susceptibility and the electric field associated with the
LO phonons. The results obtained for those alkali halides for which the third-order optical susceptibility has not been measured
yet, show that the electrooptic and lattice contributions to the hyper-Raman scattering are comparable. In all crystals
considered, we found the cubic anisotropy of the electrooptic part of the hyper-Raman tensor to be not strongly exhibited.

Keywords: Nonlinear susceptibilities, nonlinear refractive index, hyper-Raman scattering, electrooptic effects, alkali
halides

1. INTRODUCTION
The bond polarizability model has been employed previously for various crystals, including alkali halides and crystals
composed of different bonds, either to nonlinear effects of purely electronic origin or to phenomena due to nonlinear
interactions of electric fields with the crystal lattice. For example, the method has been applied to second-'-3 and third-harmonic
generation"6 , and the linear7'8 and quadratic electrooptic coefficients.9 Recently, studies of hyper-Raman scattering in alkali
halides by the zone-centre optical phonons'0 and calculations of the nonlinear refractive of alkali halides have been presented as
well."

The aim of this work is to present calculations of the electronic third-order nonlinear susceptibility of alkali halides and to
discuss the contribution of the nonlinear susceptibility to the hyper-Raman scattering of the crystals.

2. METHOD
Our calculations utilize the approach based on the idea of interionic excitations. These are often described in terms of the one-
gap Penn model.12 In the model, the optical susceptibility can be related to the transition from the valence band to an exciton
state or to the conduction band. One notes that the interionic description is not necessary limited to covalent compounds. In
alkali halides the highest valence band is formed from the p-electrons of the anions and the lowest conduction band from the
s-electrons of the cations.13

Within the Phillips-Van Vechten theory' 4' 5 , the effective energy gap E, of the Penn model can be decomposed into
heteropolar C and homopolar Eh contributions. In the long-wavelength limit, the linear optical susceptibility X(0) is given by

S(ho)°P)2
(1W - 2(2 2E) (1)

(C' +Eh)

In this, cop is the plasma frequency of the free-valance electron gas defined as
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(hc)2 = Ne e 2AD (2)
47im

where A and D are correction factors of order unity, N, is the density of the valence electrons, and e and m are the electron
charge and mass, respectively. The Phillips-Van Vechten theory introduces the so-called spectroscopic scale of ionicity 4 15 , as
measured by the parameter fi

=C2 +E2 2 (3)

The heteropolar contribution is related to the ionic binding and in the A'Bv1" compounds can be expressed by

C = b e2 r.l ro )exp- •- r2 (4)

where r, and rp are the cation and anion radii, respectively, R-r,+rp is the bond length, k, is the Thomas-Fermi screening wave
number and the parameter b accounts for the deficiency of the model in describing the screening by free electrons. Following
Levine', we expressed Eh as I

Eh =Ah R-'r (R-2rc) 2 s 2(5

rIc2s + rpc2s ,

where Ah and s are constants, ra, = rd- 0.175R, rpc = rp- 0.175R and rc = 0.175R.

Although the approach describes the optical susceptibility in terms of the interionic excitations, Phillips and Van Vechten
have introduced an additional coefficient D into the Eq. (2) to account for excitations of core electrons.' 4" 5 Accordingly,
Weber16 decomposed the linear susceptibility of alkali halides into two parts due to different microscopic phenomena

Xij = X'ii + X ij , (6)

where the term X'ij describes that part of the optical susceptibility which is interionic and can be related to the bond

polarizability. The contribution XY"ij stems from excitations of the cation cores and represents the intraionic part of xwj.
According to the bond polarizability approach (see, for example, in Refs 1,4), the macroscopic linear optical susceptibility x'ij
can be expressed by

1 Z L,TX'ij "V n• CCn ni CC'nj • (7)

Here, n3L'T is the longitudinal or transverse component of the axially symmetric bond polarizability tensor, defined in a way
which includes local field effects, Oani is the relevant direction cosine, and the summation is taken over all bonds in the volume
V. The bond polarizability model provides a simple link between the crystal structure and magnitude of nonlinear optical
susceptibilities. In terms of the bond polarizability model these are described by higher-order bond polarizabilities. Dispersion
in the linear and second-order bond polarizabilities of alkali halides has been discussed in Ref 17.

Employing Eqs (1)-(7), two independent components of the third-order optical susceptibility tensor of the rock salt-structure
crystals can be expressed as6

4 (L 3T
(,') 3 R (Fe +2c F,)

and (4e)2 llff( c , (8)

2(y')
3 R

4 c3 Fl

X1122 8Ir2 qeff(I+2c) 3  (9)

where c=13T/j3L describes the anisotropy of the linear bond polarizability tensor, q~fr is the effective bond charge, and F•'r
defined as

FL R R 2 r a2 PLT
LT (ArLT 2(10)

represents the electronic contribution to the longitudinal or transverse component of the third-order bond polarizability tensor.
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Except for the effective bond charge, all parameters which appear in Eqs (8) and (9) can be easily obtained from
experimental data. The way of deriving the numerical values of components pL and pT and, therefore, c from the interionic part
of the linear optical susceptibility, has been proposed in Ref 16. In our calculations, we employed the effective bond charge
determined by taking into account the relationship between the charge and the ionicity of the crystals.18'1 9

3. HYPER-RAMAN SCATTERING IN ALKALI HALIDES
In centrosymmetric crystals like alkali halides, the second-order nonlinear susceptibility Xljk) is allowed on the bond level.
When the local changes in the symmetry due to the lattice vibrations are neglected, contributions of all bonds in the unit cell
cancel themselves and Xi) vanishes on the macroscopic level.10 However, when fonons locally brake the inversion symmetry,
an observation of scattering of light in the vicinity of the second harmonic of the incident light, i.e. hyper-Raman scattering, is
possible.2°,2'

In the halite-type alkali halides, of-resonance, the HR tensor Ra5 of the zone-center TO and LO phonons is given by
derivatives of the susceptibility X 2)with respect to the relative displacement u of the alkali metal and halogen sublattices and
the macroscopic electric field E associated with the LO phonon2°'2'

T C9 (2)

R a =7O • ,a)
R 

(11)

L O a X ,(2)
LO 0 • - ' acx3+" eo
a507v - - s3

LO
In this, the second term in the expression for Ra p, is related to the electro-optic contribution to HR scattering by the LO
mode, namely

4R e, N (F(-o) + 2) ( 9
RsaY 36(oo) 1E5. )R (12)

where es is the Szigeti effective charge, E(oo) is the long-wave value of the electronic dielectric constant, N is the density of ion
pairs and , E _() with ,( being the third harmonic generation susceptibility. Within the Kleinmann

symmetry approximation, the zone-centre HR tensor of the crystals possess 12 non-zero and 2 independent
components R.. and Rxxyy for a=5=x and 3Z=yy, and ac=6=3=y-x, respectively. 21

The hyper-Raman-spectra of some alkali halides have been measured by Vogt and Presting at room temperature. Two hyper-
Raman lines corresponding to the transverse-optic (TO) and longitudinal-optic (LO) phonons at the center of the Brillouin zone
were observed. Different configurations have been considered.20 The first one was the configuration x(yx)z where the

scattering is due to the hyper-Raman tensor elements R To and R eo . The spectral hyper-Raman efficiencies STo(Q) and
SLO(Q2) can be given by20

]RTO 12

STO W) - hI-L- [• c] 4 [n(o)+ 1] 2 Im[s(O()I, (13)
47 il c N2  Z

2

SLO () = h4'L c(oN)2 [n c]4 [n(o)+11 RxTO + R
0  Im -(14)

In Eqs (13) and (14), I=2(0L-(0 is the frequency of the scattered light, N is the number of primitive cells per unit volume, IL is
the laser intensity, Z is the transverse effective ionic charge, [n(o))+1] is the Bose occupation factor and Tl is the refractive
index. From Eqs (13) and (14) one obtains20

S TO P•) 92 h [n(a)) + 1] RxTOy 21' (15)

where M is the reduced mass of the vibrating ions. Analogously, the expression for SLO can be obtained by replacing COTO by

Oko and the hyper-Raman tensor element R Toy by Re° 20 The values IRTO / RTO I have been experimentally determined
by switching between the scattering configurations x(yy)z and x(yx)z. To obtain more information about the relative values of
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the hyper-Raman components, in Ref. 20 the intensities of the LO-phonon lines in the scattering configurations x(yy*)z* and
x(yx)z*,y*=[001] and z*%[01 1] were compared. The ratio of the corresponding hyper-Raman efficiencies

2

SLO [x(yy*)zI*] 1 Rx _I (16)* LO

along with EaS (13) and (14), allowed the experimental values ofI RLO /RTO 1, lR LOx/RxLO I, IRxx / RTO
To? n .2 h ale rsetdi Rf 020so XXY') thxxy XXXX XXYY XXXX , -XXXX

and next R0 to be determined.2 The values presented in Refs 10,20 show that the magnitude of the lattice contributions toTO T "•-14

Rý, and R• are of the order of magnitude of 10 esu.

4. RESULTS
The electrooptic contributions to the HR tensor of alkali halides derived in this work by employing Eqs (8) - (10) and (12) are
listed in Table 1. The values obtained correspond to the long-wavelength limit, what is an intrinsic feature of the approach. In

Table 1. Calculated values of the electrooptic contribution to the HR tensor of alkali halides.
Like previously published results.°'0 9' 20 , our values are given in 10-14 esu.

Crystal R eo Re eoCrystalXY R xxxy xxx/ R XXYY

LiC1 1.79 0.50 3.55

LiBr 2.46 0.73 3.35

LiI 2.90 1.45 2.90

Nal 2.23 0.93 2.40

KF 0.60 0.18 3.39

KI 1.32 0.52 2.56

RbF 1.12 0.38 2.95

RbC1 0.77 0.24 3.16

RbBr 0.86 0.27 3.25

RbI 1.17 0.41 2.84

our calculations we employed values of Xj, X"ij, and f, as listed in Ref. 22, along with the ionic radii corresponding to the
minimum of electron density between cation and anion.2 3 The long-wavelength values of the linear refractive index were taken
.from Refs 24,25. In our work we adopted calibration scale for the third-order optical susceptibility recommended in Ref 26.
This scale is roughly midway between the lowest27 and the highest20 proposed scales. To compare the values of the electrooptic
contribution to the HR tensor calculated or measured at different frequencies, the dispersion in the third-order optical
susceptibility should be taken into account. This can be done by using the generalized Miller rule or some others
semi-empirical formulas (see, for example, Refs 11,29).

5. CONCLUSION
The ratio R Rxe/,y is close to 3, as it should be in isotropic materials. This proves that in the alkali halides the cubic
anisotropy of the electrooptic contribution to the HR tensor is not strongly exhibited. When comparing our results with the
previous experimental and theoretical results10 '°'2 one observes that the lattice and electro-optic contribution to HR scattering
are of comparable magnitudes.
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